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Quantum instability in a dc SQUID with strongly asymmetric dynamical parameters
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A classical system cannot escape out of a metastable state at zero temperature. However, a composite system
made from both classical and quantum degrees of freedom may drag itself out of the metastable state by a
sequential process. The sequence starts with the tunneling of the quantum component which then triggers a
distortion of the trapping potential holding the classical part. Provided this distortion is large enough to turn the
metastable state into an unstable one, the classical component can escape. We show that such a composite
system can be conveniently studied and implemented in a dc superconducting quantum interference device
(SQUID) featuring asymmetric dynamical parameters. We determine the dynamical phase diagram of this
system for various choices of junction parameters and system preparations.
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I. INTRODUCTION

Consider a classical object (a heavy degree of freedom)
trapped in a metastable potential minimum; no decay out of
this metastable state is possible at low temperatures, where
thermal activation over the barrier is exponentially sup-
pressed. However, if the classical object is a composite one,
with a quantum object (a light degree of freedom) coupled to
the classical one, then the quantum object may tunnel out of
the metastable minimum and exert a pulling force on the
classical one. Once this force is large enough to completely
suppress the trapping barrier, the classical object is able to
leave the potential well—hence a classical object may escape
from a metastable state even at zero temperature if helped by
a coupled quantum degree of freedom. This process reminds
of the famous Baron Miinchhausen who told the story of
rescuing himself from sinking in a swamp by pulling himself
up by his own hair—we thus term this decay the “Miinch-
hausen effect.”

The above situation can be realized in a dc superconduct-
ing quantum interference device (SQUID) featuring asym-
metric dynamical parameters, i.e., with two Josephson junc-
tions of equal critical currents J. but strongly different
(shunt) capacitances C and (shunt) resistances R (see Fig. 1).
Choosing large and small parameters C and 1/R for the two
junctions allows to place one of the junctions in the “classi-
cal” and the other into the quantum domain. The tunneling of
the quantum degree of freedom entails a distortion of the
trapping potential of the classical junction, which might be
sufficiently large to transform the metastable state of the
classical junction into an unstable one. The appearance of
this complex decay channel depends critically on the applied
bias current J and the SQUID’s loop inductance L coupling
the two junctions.

The gauge-invariant phase differences ¢;, i=1,2, across
the two Josephson junctions' define our dynamical degrees
of freedom: assuming equal critical currents J,, the junc-
tions’ potential energies V,=E,[1—-cos ¢;], i=1,2, involve
the Josephson energy E;=®.J/./2mc (with ®y=hc/2e the
flux unit, e and ¢ denote the unit charge and light velocity).?
Their kinetic energies 7;=(%/2¢)?C;¢?/2 are determined by
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the junction capacitances C; playing the role of effective
masses (the relevant energy scale is given by the charging
energy E.;=¢’/2C;)—a dynamically asymmetric SQUID
with one large and one small junction capacitance then pro-
vides us with the desired classical and quantum degrees of
freedom (we choose C;> C,; additional normal resistances
R; introduce a dissipative dynamical component, see below).
The coupling of the two junctions via the loop inductance L
produces the interaction energy Vi,=[(®y/2m)?/2L](¢,
—@)? involving the relative coordinate (@,—¢;), whereas
the external driving current J couples to the absolute coordi-
nate, Vyiwe=E;(J/2J.)(¢;+¢;). While large-capacitance
(classical) junctions are easily fabricated, small (quantum)
junctions are more difficult to realize. Nevertheless, experi-
mental techniques to fabricate small junctions are available
today and their quantum behavior in the form of quantum
tunneling,>-% quantized energy levels,”® and even quantum
coherence® !> has been demonstrated.

The quantum decay of the biased, dynamically symmetric
dc SQUID has been discussed before both
experimentally'®!7 and theoretically,'® also in the context of
instanton splitting.!®?° In the SQUID discussed here,?! the
large asymmetry of the dynamical parameters blocks the tun-
neling of the ¢, degree of freedom since the tunneling rate is
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FIG. 1. Schematics of the dynamically asymmetric dc SQUID.
Two Josephson junctions are integrated in a current (J) biased su-
perconducting loop with inductance L. The two junctions feature
equal critical currents J,. but strongly asymmetric (shunt) capaci-
tances C; and (shunt) resistances R;. We assume that C; and R; are
chosen such that quantum effects are present for junction 2 but are
strongly suppressed for junction 1, hence C;> C, and/or R; <R,.
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FIG. 2. (a) Surface and (b) contour plot of the SQUID potential,
Eq. (2), at bias current j=0.5 and coupling k=0.04. For an under-
critical current j<1, the symmetric minima (¢;=¢,) are all meta-
stable. The stability of the side minima (¢, # ¢,) depends crucially
on the parameters j and k. The line in (b) shows the decay path in
an overdamped setup: the system starts out in a relaxed local
ground state near the initial minimum at ¢ =¢,=arcsin j. The light
degree of freedom ¢, then tunnels (dotted line) and the system
relaxes to the bottom of the next minimum near ¢,= 27, with a
classically stable but quantum mechanically metastable ground
state. Through an additional quantum phase slip, the light phase
reaches the minimum near ¢, =4, which is nor classically stable
and henceforth the system can decay along a classically allowed
path to ¢;=2m. The system then has turned unstable and enters a
resistive state through iteration of the last two steps.

exponentially suppressed with an exponent «(E,/E,)"?. The
“heavy” junction then remains frozen during the quantum
decay of the “light” degree of freedom ¢,. A trajectory of
this kind describes the entry of flux into the SQUID loop
which rearranges the current flow in the two arms in a way as
to redirect more current through the heavy junction. This
increase in current produces an enhanced tilt —J ¢¢; in the
potential of the heavy junction, which then may decay
through a classical trajectory (see Fig. 2). We call this non-
trivial decay sequence the “Miinchhausen decay.” It is the
aim of this work to determine the effective critical current
J.(L™") for which the Miinchhausen decay becomes possible
(see Figs. 5 and 9-12).
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In the following, we define our system in full detail, in-
cluding a dissipative component in the junction dynamics
(Sec. II). Sections III and IV are devoted to the derivation of
the effective critical currents for the various cases with junc-
tions governed by massive or dissipative dynamics. In Sec. V
we add remarks concerning the experimental realization of
the system described here. Finally, we draw conclusions in
Sec. VL.

II. SETUP AND MODEL

Within the resistively and capacitively shunted junction
(RCSJ) model (at T=0), the classical dynamics of the two
phase differences ¢; and ¢, is governed by the equations of
motion

-2 .. .
Wy Gi+ 79 == 9, 0(@1. @), (1)

with the plasma frequency ﬁzwai=8E JE.; of an unbiased
single junction and the damping coefficients 7,
=®y/2mcJ R; (R; denote the normal Ohmic junction resis-
tances). The potential (see Fig. 2) is given by

v(@p. @) =1 =cos @+ 1 —=cos ¢, = j(; + ¢2)
k
+5 (o= ©)°, (2)

with the dimensionless current j=J/2J. and the coupling
constant k=®yc/27J L=1/B; (B, denotes the usual screen-
ing parameter of the SQUID). Equations (1) and (2) describe
a dc SQUID with symmetric inductance L in a vanishing
external magnetic field and driven by a bias current J or,
equivalently, the massive (mass ocwg?,.) and/or dissipative (7;)
dynamics of two harmonically (k) coupled particles in a
tilted (j) and corrugated (cos ¢;) potential. Quantum effects
of the light junction 2 are accounted for via the relevant
tunneling and decay processes (see below).

For large k> 1, the potential v(¢g,, ;) strongly couples
the two degrees of freedom and their relative motion is in-
hibited. The effects we are interested in here emerge in the
regime k<1, where ¢; and ¢, can separate. Then, the po-
tential (2) gives rise to two types of relevant frequencies.
One is the plasma frequency w),;, the small-amplitude fre-
quency in the direction of ¢; around a local minimum of the
potential v(¢;, ¢,). With the effective potential

ver [@1](@)) =v(@=const, ), i # 1, (3)

(cf. Fig. 3) w;i:w%!i&iiveff(goi), evaluated at a local minimum
goim , and depends on the parameters j and k as well as on
@"". For the heavy junction (junction 1), @, can become
arbitrarily small upon approaching criticality, while for the
quantum junction (junction 2) w,, becomes small only for
j—1 and k—0. The other frequency is given by the LC
constant of the “superwell” in v.x(¢,) (cf. Fig. 3) and is
relevant only in the regime k<1 and for the quantum junc-
tion (junction 2), wic’2=w(2),2k=c2/LC2.

Using these characteristic frequencies we can delineate
the regimes, where the two junctions behave classically and
quantum mechanically, respectively. For the heavy junction,

n
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FIG. 3. Effective potential v g(¢,)=v(¢p;=const, ¢,) (solid line)
and the parabola remaining after dropping cos ¢, (dashed line) for
j=0.5, k=0.02, and ¢;=arcsin j. Bullets and arrows illustrate the
sequential decay of the quantum phase ¢, to the ground state for the
case of strong damping.

we have to guarantee that the only important quantum effect,
tunneling, can be ignored, i.e., that the tunneling rate is
sufficiently small. This requires the number E,/fiw),;
~(E;E.)"*(1=|1)|1J)* of states in the local well
to be large, as the tunneling rate for an undamped system
(within a cubic approximation of the potential) is
sexp(-36E,/5hw), ).>** Here, J; is the current through the
junction 1. If |J;|—J,, the tunneling exponent becomes
small, resulting in an observable tunneling rate. However,
choosing a large ratio E;/E. ;> 1, we can ensure that tunnel-
ing effects manifest themselves only close to criticality,
where a classical instability is imminent. In this case quan-
tum corrections are small and we can ignore them in our
discussion below, i.e., we can treat ¢; as a classical variable.

For the quantum junction we require E,;/fiw,, to be of
order unity. Then, the quasiclassical description applies and
local wells in v{¢p,) contain a few quasiclassical states
each. Furthermore, tunneling and coherence effects manifest
themselves on reasonably short (measurable) time scales.

The strength of dissipation can be quantified by the di-
mensionless damping parameters

Q,;= (ZRiCiwp,i)_l ) (4)

arcn= (2R, Cropcn) ™" (5)

Below, we are interested in the two limiting cases of strong
and weak damping. For a strongly damped quantum junction
with a,,>1, the quantum decay of @, out of a metastable
well of v.g(¢,) is incoherent™!? and its subsequent relaxation
is fast (as compared to the dynamics of ¢,). For weak damp-
ing, a;c,<1, a,;<<1, the kinetic energy stored in the mo-
tion of the heavy junction has to be accounted for; in addi-
tion, the finite lifetime of the quantum states of the light
junction due to the residual dissipation has to be considered
(see the discussion in Sec. IV).

III. STRONG DAMPING

We start our discussion with the simplest case (at least
from a theoretical point of view) and analyze the situation
for strong damping,” a,,,>1 and a,, ;> 1 (the normal resis-
tance of good quality junctions vanishes at low temperatures,
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requiring external shunts to generate damping). We bear in
mind an experiment with a dc SQUID characterized by a
fixed inductance Lo k™! and biased with a current j<1. The
task is to determine whether the Miinchhausen decay can
take place. In the experiment, the latter manifests itself
through the transition to a finite-voltage state. In the strong
damping case, no kinetic energy is stored in the system. Fur-
thermore, the evolution is not sensitive to the way the current
is ramped. After current ramping, the system starts out in a
relaxed state, where the phases ¢; are localized in the diag-
onal metastable minimum at ¢;=¢@,=arcsin j (up to an arbi-
trary multiple of 277).

For sufficiently large j, the quantum degree of freedom ¢,
undergoes tunneling to a new local minimum nearby 2mn,
while the classical degree of freedom ¢;=arcsin j remains
localized, thus allowing a flux =n®,, neN, to enter the
SQUID loop (cf. Fig. 3). If the resulting force on the classi-
cal phase ¢, is sufficiently large, the Miinchhausen decay is
enabled with a classical decay of ¢, and successive iteration
of quantum decay (directed along ¢,, flux entry) and classi-
cal relaxation (directed mainly along ¢;, flux exit) (cf.
Fig. 2).

The strong coupling at large k keeps the local minimum at
¢,=arcsin j lower in energy than the adjacent local well at
¢, =2 for all bias currents j, hence tunneling is inhibited
and no Miinchhausen decay takes place. At lower k, a bias
current j <1 can sufficiently lower the adjacent well such as
to bring both minima to equal height. This condition is
reached once the minimum of the parabola in v.(¢,) (at
¢@,=arcsin j+j/k) is aligned with the midpoint between the
two corresponding minima of —cos ¢, (at @,=m), i.e., if
arcsin j+j/k=r. Thus, for k<k,(j), with**

J
o —arcsin j

k:,l(j) = (6)

the minimum at ¢,=~27 is lower and a quantum decay is
enabled [cf. Fig. 4(b), point C in the diagram]. The jump of
¢, by roughly 27 then pulls the heavy junction out of its
minimum and the Miinchhausen decay is initiated [cf. Figs.
4(a) and 4(b) associated with the sequence of points A, B,
and C in Fig. 4(c)]. The smaller k becomes, i.e., the weaker
¢, is bound to ¢, the less current is needed to lower the
adjacent minimum such as to allow for a decay of ¢,, hence
the positive slope of k7, (;).

Decreasing k too far, however, the pulling force exerted
by the quantum junction may not be sufficient to drag the
heavy junction out of its minimum. Hence, we have to in-
vestigate the shape of the potential v(¢;,¢,) after the phase
slip in ¢, i.e., nearby the point (¢; = arcsin j, ¢,~21r), and
check whether the barrier against a classical decay (mainly
along ¢,) has disappeared,; this is identical to the calculation
of the critical current of a SQUID with a trapped flux.>>2°

We first determine the position of the minimum by solv-
ing the equations

g, 0(@1,¢2) =sin(e)) = j + k(g — ¢5) =0, (7)
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FIG. 4. Illustration of the assembly of j.(k) from the segments
j:’l(k), Eq. (6), and j,(k), Eq. (11). In (c), the relevant region of the
Jj-k plane is shown. At A, the quantum junction [see (b)] has relaxed
to the initial minimum (r2=0) and the classical junction is localized
in a stable minimum [see (a)]. Increasing the bias current j and
approaching B, the potential barrier confining the classical phase in
veri(@1) is only slightly reduced. As j> (k) (point C), the in-
crease in j has deformed the effective potential v (¢@,) as to allow
a phase slip of ¢, [see (b)]. The additional force it exerts on the
classical junction immediately removes the barrier [see (a)] and
delocalizes ¢, at j.(k)= j:yl(k). On the other hand, an increase in
bias j>j:’1(k) from A’ to B’ at lower & leads to a phase slip of ¢,
[(see (e)], without delocalizing ¢; [see (d)]. A further increase in j
triggers a classical decay [see (d)] when crossing the critical line at
Jo)=J7,(4) (point ).

4, 0(@1,92) = sin(@y) — j — k(e — ¢,) =0, (8)

for ¢ =arcsin j and ¢, ~=~2m. At the critical coupling k;l(/')
the minimum should merge with a saddle and define an in-
flection point along some direction in the (¢, ¢,) plane. The
resulting system of equations requires numerical solution and
the result is shown in the inset of Fig. 5. However, within the
interesting region at small coupling & we can find an approxi-
mate analytical solution: for k<<1, the side minimum of
v(¢;,@,) becomes unstable predominantly along the ¢, di-
rection. Thus, the minimum disappears if

3, 0(@1,2) = cos @y + k=0 9)
We choose the solution ¢, =~ /2 [we set k=0 and assume
0= ¢; <2, the other solution ¢;=~3/2 cannot solve Eq.
(7) and is discarded]. Inserting ¢; into the sum of Egs. (7)
and (8) yields the relation

sin g, = 2j -1, (10)

from which we find ¢, ~2m+arcsin[2j—1] (the other solu-
tion ¢,~3m—arcsin[2j—1] is excluded since it describes a
maximum along the ¢, direction). Inserting ¢; and ¢, into
Eq. (7), we find the condition
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FIG. 5. Phase diagram of the dynamically asymmetric dc
SQUID as a function of bias current j=J/2J. and inductive cou-
pling k=®yc/27LJ.. Here, we assume strong damping a;, ;> 1 and
@,,>1. The effective critical current j.(k) (solid line) marks the
boundary between a localized classical junction (lower bias j<j.)
and a delocalized classical junction (j>j,.), corresponding to a
finite-voltage state of the SQUID. Branches with negative slope are
determined by a classical instability (mainly along ¢;), while those
with positive slope are determined by a quantum instability of the
light junction. For j <j.(k), the dotted lines j (k) mark the entry of
flux through the quantum junction (the integer n approximately
quantifies the flux through the ring in the stable state); these lines
can be measured via monitoring of the flux threading the loop. For
J>j(k), dashed lines j_ (k) mark the minimum number m of flux
units necessary to delocalize the classical junction. Inset shows a
comparison between the approximate result, Eqs. (13) and (14)
(solid line), and the exact numerical result (dashed).

1-j
(3/2)m +arcsin(2j - 1)

kea() = (11)
For k>k_,(j) no barrier blocks the motion of ¢, after the
phase slip in ¢, and a classical decay of ¢, is enabled, thus
completing the Miinchhausen decay. This scenario is de-
scribed by the sequence A, B, C in Fig. 4(c). For k<k_,(j)
the force after the phase slips is too small and an additional
increase in j is necessary to drive the system overcritical, as
illustrated by the sequence A’, B’, C’ in Figs. 4(c)-4(e). The
increase in critical current with decreasing coupling defines a
negative slope for k_,(j).

We define the effective critical current j (k) as the phase
boundary between the stable region [j<j.(k)], where the
Miinchhausen decay is prohibited, and the delocalized phase
[j>j.(k)]. This critical line is assembled from the segments
jo1(k), the inverse functions of k,(j), Eqgs. (6) and (11),
respectively. Ramping up the current j at large values of k,
we eventually cross jz’l(k). The phase slip of ¢, immediately
enables the classical decay of ¢; and the system enters a
running state, hence, j.(k)=/; (k). At lower k, increasing j
beyond j:,l(k) triggers a phase slip of ¢,, but the resulting
force is too weak to delocalize ¢;. A further increase in j is
necessary until, at j=j_,(k), the minimum disappears and the
Miinchhausen decay proceeds, hence, j.(k)=j_ (k).

Following the above discussion, the system is stable for
j< j;l(k). Upon further decreasing k, however, more and
more side minima in v.(@,) become accessible to the quan-
tum junction. From Fig. 3 we notice that the different local
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minima of v (¢,) are located near ¢,~2mn. They describe
the state where a flux =n®, has entered the loop and we
label them by the index n. Equation (6) is then straightfor-
wardly generalized to the critical line k,(j) describing the
entry of the nth fluxon. The nth phase slip of ¢, occurs when
the global minimum in vg(¢,) shifts from ¢, ~2m(n—1) to
¢,~2mn. We can proceed analogously to the derivation of
Eq. (6): let ¢"™"! be the solution of Egs. (7) and (8) near
¢, = arcsin j, ¢, =~2m(n—1). In order to find the crossing in
the height of the two minima we account for the relaxation of
¢; and align the minimum of the shifted parabola (¢,

=M™~ 1j/k) with the midpoint between the two minima
min,n—1

of the —cos ¢, potential [¢,=(2n—1)7], hence ¢}
+j/k=(2n-1)7 and

J
in,n—1"
Q2n-1)m- o™

ke () = (12)

A convenient approximation is made by ignoring the relax-
ation of ¢, resulting in the expression

J
2n—1)ar—arcsin j

k! () = ( (13)

Similarly, we can generalize Eq. (11) to a critical coupling
k_,(j), determining whether the resulting force at given
fluxon index n is sufficient to delocalize ¢;. We then solve

Egs. (7) and (8) near ¢, =arcsin j, ¢, ~27mn, proceed as in
the derivation of Eq. (11), and find (for small k<1)

1-j
"~ (2n—-1/2)m+arcsin(2j - 1)

k(i) (14)
The critical current line j (k) is constructed from interchang-
ing segments of j. (k) and j_,(k), resulting in the dynamical
phase diagram (Fig. 5). Note that the different natures of the
decay, classical or quantum, associated with the two types of
critical lines may allow for an experimental distinction:
ramping the current past a +-type segment of j.(k) triggers a
quantum decay with a broad histogram describing multiple
measurements. A —-type segment of j.(k) triggers a classical
decay with a sharp histogram (the quantum decay of ¢,
needs to have occurred already, which limits the ramping
speed before reaching the critical line). Note that the lines
Jen(k) are detectable throughout all the stable portion of the
phase diagram, e.g., via a measurement of the flux threading
the loop (the flux increases by approximately 1 flux unit
upon crossing the dotted lines in Fig. 5).

The phase diagram in Fig. 5 shows that the critical line
Jc(k) approaches the value % for k—0. This is understood
from analyzing Eqgs. (13) and (14) for large n and small k,
providing the relations k. ,(j)=j/2nm and k_,(j)=(1
—J)/2nr, respectively. Equating the two conditions gives j,.
~(.5. From a physical point of view, this result can be easily
explained: the decay of ¢, proceeds toward the bottom of the
parabola in v.g(¢p,); for k— 0, the current through the quan-
tum junction then approaches zero, J,osin ¢,=~0. Conse-
quently, all current is redirected through the classical junc-
tion 1, with the effective bias now increased to J;=2j/,.
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FIG. 6. Sketch of a time trace of the flux threading the SQUID
loop during the decay process of ¢; and ¢, at j>j.(k) [cf. Fig.
2(b)]. The flux increases by approximately 1 flux unit each time the
quantum junction decays; this process then involves the tunneling
rate I’y of ¢,, Eq. (15). The additional flux leaves the loop again
within the time interval ~ 7, as the classical junction relaxes dissi-
patively to the next minimum.

Junction 1 thus turns dissipative at j =%, the critical current

of a single junction but half the critical current of the dc
SQUID.

The dynamical phase diagram, Fig. 5, can be tested ex-
perimentally through a measurement of the dc voltage drop
across the device. The second Josephson relation! tells that
the time-averaged voltage through junction i, (V;),%(¢;),. In-
specting Fig. 2(b), we understand that the continuous itera-
tion of quantum and classical decays of the light phase vari-
able and the heavy phase variable generate the nonzero
averages (¢,),={@,), for j> j.(k). The time averages over the
two phases are equal since, during one full iteration of the
decay cycle, both phases advance by 2. Thus, the voltage
drop over the total device (V),=(V,),=(V,),. For the over-
damped setup described above, the voltage drop is small, as
strong damping reduces the tunneling rate determining the
average “velocities” (¢;),. This is particularly true close to
the critical line, where the variable ¢, needs to tunnel in the
“flat” part of v.(¢,). The decay process is faster for weak
damping and thus generates a larger voltage signal—we dis-
cuss this situation in Sec. IV.

Another characteristic signal of the Miinchhausen decay
is the time trace of the magnetic flux threading the SQUID
loop during the alternating decay of the two phases (see Figs.
2(b) and 6 for an illustration). Such time traces exhibit two
characteristic time scales: one is due to the tunneling of the
quantum junction involving the rate I', separating subse-
quent peaks of flux entry into the loop and the other is due to
the classical relaxation of the heavy junction and involves
the dissipative time ~ n; describing the flux exit and return
to the low-flux state of the loop. At small k and small effec-
tive bias between two minima,

@ - hwo,zEc,z( Ro
(1)0’2 E‘% 7TR2

with Ry=h/4e*?

712
) (] —J':,n)ZRQ/RZ_l , (15)

IV. WEAK DAMPING

The behavior of the system for weak damping a;,<<1,
a, ;<1 is quite similar to the one encountered before, while
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the (small) differences strongly depend on the many system
parameters and their associated time scales. Let us neglect
dissipative effects for the moment. Bearing in mind the limit
of large C,/C,, we can exploit the adiabatic separation of
fast and slow degrees of freedom, i.e., we first consider the
fast problem for the quantum junction,

HoW () = &V (@), (16)
with the reduced Hamiltonian [cf. Eq. (1)]
Hy=- 4Ec,2(922 +Epele1](p2) (17)

defined at fixed ¢,. Equation (16) establishes the dynamics of
the light variable ¢, and we can find the energies &,(¢;).
These act as effective potentials for the heavy degree of free-
dom ¢, e.g., assuming the quantum junction to reside in a
state |I), (@,|)=,(¢,), the effective potential for ¢, is
given by g;(¢;). Typical examples for the effective potentials
go(p) (ground state) and &;(¢;) (first excited state) are
shown in Fig. 7.

In the dissipative situation, we could derive the phase
diagram from simply analyzing the potential v(¢,, ¢,); here,
instead, we first determine which states / of the light junction
are relevant and then analyze the dynamics of ¢; in the re-
sulting effective potential [e.g., Fig. 7(a)] defined via &,(¢;),
thus determining whether the heavy junction stays localized
or enters a running state. Both tasks strongly depend on the
various time scales involved. We start with the time scale of
the “external control,” the rate at which the bias j is ramped.
Whereas the case of strong damping excluded the presence
of kinetic energy in the system, this is no longer the case
here. The importance of the ramping rate then comes about
through the amount of energy which is transferred to the two
degrees of freedom. The change in j translates to a change in
the potential v(¢;,®,) with a rate on the order of d,j. The
ramping can be adiabatic, in which case no energy is given to
the system, or instantaneous, where the amount of trans-
ferred energy is maximal. Intermediate types of ramping will
not be discussed.

The adiabatic separation of time scales requires a large
capacitance ratio C, > C,. For 0, | <), , the intravalley mo-
tions of the two junctions are separated. The (tunneling) mo-
tion of the light junction across valleys produces a stronger
condition. Consider the tunneling splitting A, in the spec-
trum of H, at an avoided level crossing [cf. Fig. 7(a)],

Ay ~ fhiw, , exp(= YWE4E, ), (18)

with y depending on the actual shape of the potential,
b
—_—
7=f de\veii(@2) — EG/E; (19)

in the quasiclassical approximation. Here, E, is the ground-
state energy in the well and a and b are the left and right
classical turning points, respectively, v.@,=a)=v.u(b)
=FE,/E;. The tunneling gap A, then is relevant when analyz-
ing the motion of the classical junction (¢;) in the effective
potential given by g,(¢;). If the motion of ¢, is sufficiently
slow, its passage along an avoided crossing in the spectrum
of H, is adiabatic and ¢, follows g,(¢,) through the anti-
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(1)

(1)

(1)

FIG. 7. Illustration of the effective potential for the heavy phase
¢, generated by the two lowest levels of the light phase. In (a), the
situation for k=0.15, j=0.36 is shown. The avoided level crossing
2A, in the spectrum of the light junction is reflected in the effective
potentials gy(¢;) (solid) and &,(¢,;) (dotted) for the heavy junction.
Inset illustrates the two-dimensional path [¢;, <pr2m“‘0/1(<p1):| in
v(e;, ;) corresponding to gy(¢;) (solid, A/B) and &;(¢;) (dotted,
C/D); the upward/downward jump along ¢, to the next minimum
corresponds to the avoided crossing in &(¢;). (b) Series of £q(¢;)
(solid) and &;(¢;) (dotted) for various values of j at k=0.1. Increas-
ing j shifts the position of the avoided crossing in £(¢,) to the left.
Its transition past ¢]"" (between j=0.26 and j=0.3) corresponds to
crossing the line j:,l(k) and implies the decay of the quantum junc-
tion to the next local minimum. Note that in the present case the
newly formed minimum is stable (a point of type B’ in Fig. 4).

crossing [cf. the trajectory A— B in Fig. 7(a)], i.e., the phase
¢, tunnels to the next adjacent minimum. On the other hand,
if the motion of ¢, is fast, the state of the quantum junction
undergoes Landau-Zener tunneling [cf. the trajectory
A —D in Fig. 7(a); the light junction then remains trapped in
its local well] and ¢, follows the effective potential &, (¢;)
after the avoided crossing. The probability p;, for Landau-
Zener tunneling at an anticrossing of the two lowest levels of
'H, is given by

27TA§ ) (20)

Prz=exp <‘ hdye (1)

where g,(t)=&,(t)—&,(z) and d, is the total time derivative.
To estimate the rate of change in energy d,e(r), we start
from
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Vert (2)

0 ir 87 127 16

FIG. 8. Illustration of decay sequences of an excited superwell
state of the quantum junction in the effective potential v i(¢,), Eq.
(3). Solid arrows indicate a decay sequence involving only states
within the superwell with a typical decay time 7,. Dashed arrows
illustrate another (extreme) decay sequence, involving localized
states in the side minima of v ;(¢,). The decay time then involves
the typical lifetime 7,> 7, of local ground states within side wells.

10~ Efv(en, ™) —v(@p, 5] (21)
and find the time derivative

min,n+1

d,Slo(I) = (9¢1810¢1 + EJ[(9¢ZU((P1,(p2)|¢glin,n+l(9¢lg02

min,n

- ﬂ¢zv(@1,ﬁp2)|¢;"‘“’”a¢l¢2 ](pl

min,n+1

= KE (5™ = @™ g, (22)

where we have used that d,,v(¢;, ¢,) vanishes at the minima
©5"™" and only the term originating from the coupling term
in v(¢;, ¢,) is relevant. Since ¢; is at most of order wy ;, we
obtain the estimate d,e,y~ 2mkwy | E;. The smallness of p; 7,
guaranteeing adiabatic motion of the classical junction (this

requires a correspondingly large C,), then follows from

E; fiwy ECI E; E,;
k———~k\| — | — 2 — | < 1.
A, A, E. VE “P\“"V4E,

5] ) 2

(23)

Let us now include the effect of (weak) dissipation as the
relaxation of the quantum degree of freedom ¢, is an impor-
tant element in our discussion. The dissipation described
by the normal resistance R in the RCSJ equation of motion
[cf. Eq. (1)] leads to typical finite lifetimes 7,~RC,
=1/2aqyw,, of the excited states |I) of the quantum
junction.”® A much longer lifetime 7, shows up if the quan-
tum junction is trapped in a local ground state of a side well
in veg(¢@y) [cf. Fig. 8]. The decay then is protected through a
large barrier E,, enhancing the typical lifetime to a value 7,
with 7, <7 xexp(2yVE;/4E,,).” Thus, there are two (ex-
treme) ways how a highly exited state in the superwell of
v @,) can decay (see Fig. 8): either via states within the
superwell involving the typical lifetime 7, or via states in-
volving a tunneling process, resulting in an exponentially
larger decay time on the order of 7.

In the following, we investigate three regimes and derive
the corresponding effective critical current j.(k). We begin
with the case of adiabatic ramping (Sec. IV A), where we
assume that the ramping is slower than the typical relaxation
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time of the heavy junction and the time scales between ¢,
and ¢, separate, i.e., inequality (23) holds. We show that the
critical current j.(k) obtained in the dissipative case (Sec. III)
is only slightly altered due to the (small) finite amount of
kinetic energy the classical junction can store. Next, we dis-
cuss the case of fast ramping (Sec. IV B), where the phase ¢,
remains effectively “frozen” during the current ramping and
quite an appreciable amount of potential energy is converted
to kinetic energy in the motion of the classical junction, lead-
ing to a pronounced reduction in j.(k). Both discussions re-
quire a very large value of C/C,— % to guarantee the ab-
sence of Landau-Zener tunneling due to the motion of ¢;. In
the last part of this section (Sec. IV C), we discuss the con-
sequences of an intermediate ratio C;/C,, where probabilis-
tic effects show up in the dynamical phase diagram. Then, ¢,
can remain trapped in a localized state in a side well during
the motion and liberation of the heavy junction. The proba-
bilistic effects emerging for this situation change the nature
of the phase diagram qualitatively.

A. Adiabatic ramping of the bias current

We start from the system with fixed coupling k at j=0 and
consider a state localized at ¢;=¢,=0. We assume slow cur-
rent ramping on the dissipative time scale of the classical
junction’s motion

aj <1/, (24)

where 7~ RC; denotes the classical relaxation time of the
heavy junction. The inequalities in Eq. (24) (slow ramping)
and Eq. (23) (slow motion of ¢;) guarantee that the quantum
junction remains in the global ground state, while the classi-
cal junction follows its local ground state near ¢;=arcsin j.

The effective potential for the heavy junction then is de-
termined by the ground-state energy g¢(¢;). In our estimate

golpy) = E,v[(pl,(,0§1°b(<,o])], (25)

we neglect the correction due to the ground-state energy E
~hw,,/2 (as measured from the bottom of the potential) of
the light junction;* the phase ¢&°°(¢,) refers to the global
minimum of the light junction. Furthermore, we ignore the
small splitting 2A, at the avoided level crossing [cf. Fig.
7(a)], replacing it with a sharp kink.

With the above approximations, the force acting on the
heavy junction originates from the classical force exerted by
the quantum junction residing in the global minimum. The
situation is thus the same as in the strong damping regime:
the “flux-entry lines” j:n(k), marking the current, where the
light junction is allowed to tunnel, are still given by Eq. (12).
When the classical junction has relaxed to the bottom of a
minimum, that minimum has to disappear in order for ¢; to
enter the running state. Given the expression (25) for g¢(¢;),
the local minimum in &y(¢;) corresponding to the nth side
minimum in v.(¢;,®,) turns into an inflection point at j
=j- ,(k), Eq. (14). This condition again agrees with the one
for ’strong damping.

A difference to the previous dissipative situation is given
by the possibility to transform potential into kinetic energy.
Ramping ; at fixed k past the flux-entry line j; (k) triggers a

184515-7



THOMANN, GESHKENBEIN, AND BLATTER

arcsin j Y2 2
] T T T
S
v(p1, p2)
| — .
<2
localized
0.2 delocalized 7
0 I I
0

0.2 0.4 0.5 0.6 0.8 1
J

FIG. 9. Phase diagram of the dynamically asymmetric dc
SQUID for weak damping and adiabatic ramping, (d,j<7,"). The
critical line j.(k) is nearly identical with the one in the strong damp-
ing case, but is hysteretic along extensions of the critical lines
j:,n(k)' These are due to the nonzero kinetic energy acquired by the
classical junction when sliding down in the new well formed after
the tunneling of ¢, at j:’n(k) and allowing ¢; to surmount a residual
potential barrier in the effective potential gy(¢;). Inset illustrates the
condition determining the termination point of the hysteretic line
along j:ﬁl(k). The three solid dots mark points of equal potential
energies; the energy gained by the classical junction due to the
phase slip of ¢, just suffices to climb the top of the remaining
barrier along ¢;.

phase slip in ¢, and deforms the potential well in gy(¢,) for
the classical junction. The latter finds itself on the slope of
the well and gains kinetic energy while sliding down toward
the new minimum. The classical junction then may enter a
running state if this kinetic energy gain is sufficient to sur-
pass the barrier blocking the newly formed (nth) minimum.
Different from the overdamped case, the system then exhib-
its hysteretic behavior, as illustrated in the dynamical phase
diagram Fig. 9, where the running state can be entered along
extensions of the j (k) line away from the phase boundary.
The point where these extensions terminate is determined by
the condition that the energy right after the tunneling of ¢, is
equal to the energy at the top of the barrier, as illustrated in
the inset of Fig. 9. If the coupling & is too small to lower the
barrier sufficiently [cf. Fig. 7(b)], the state of the heavy junc-
tion upon reaching j= j:f,n(k) is transformed into a localized
excited state of the newly formed potential well in gy(¢;).
Given the slow ramping d,j < T]_l, the heavy junction relaxes
to the ground state of the well and a further increase in j is
necessary to remove the barrier completely, hence the critical
line jumps forward to j.(k)=j.,(k).

B. Fast ramping of the bias current

We now turn to the case d,j> w), ;, where the ramping of
Jj is instantaneous with respect to the (massive) dynamics of
the heavy junction; the final current j has to remain below
~0.7 since fast ramping beyond this value allows the classi-
cal junction to overcome the potential barriers through con-
version of potential to kinetic energy. Furthermore, we study

the setting, where ), | < 7'51, ?51; the quantum junction then
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FIG. 10. Effective critical current j.(k) (solid) of the current-
biased dc SQUID with strongly asymmetric parameters as a func-
tion of bias current j and inverse inductance ko 1/L. We assume
instantaneous ramping of the bias j and a strictly classical and adia-
batically slow (as compared to the dynamics of the quantum junc-
tion) motion of the weakly damped heavy degree of freedom ¢;.
For comparison, the critical line of the dissipative case is also dis-
played (dashed line). Inset illustrates the three segments constitut-
ing the first part of j.(k), where solid dots indicate points of equal
potential energy. Inset (3) shows the situation right at the tip be-
tween segments (2) and (3).
has relaxed to the ground state (at qo’zni“’”) in the effective
potential v.;(¢,) before any motion of the heavy junction
sets in. Hence, initially, the effective potential for the classi-
cal junction is given by the ground-state energy £q(¢,). The
absence of Landau-Zener tunneling [due to the inequality in
Eq. (23)] then assures that the effective potential is given by
go(¢,) during the entire motion of the classical junction.

We then can find the criterion for ¢; to enter a running
state: during the fast ramping of the current j, the heavy
junction remains frozen at ¢;=0. We have to check whether
the potential energy of the heavy junction is sufficient to
overcome all barriers in gy(¢; >0), i.e., we have to inspect if
the maximum of gy(¢,;) in the interval 0<¢, <27 is real-
ized at ¢;=0. As soon as this condition applies, the classical
junction becomes delocalized. This analysis has to be per-
formed numerically and the result is displayed in Fig. 10. As
a first overall result, we note that the critical current is shifted
to lower values due to the instantaneous change in the effec-
tive potential for ¢, by the fast ramping of the current and by
the quantum decay of ¢,, allowing the heavy junction to
transform potential into kinetic energy.

Another prominent change is in the form of the transition
line, specifically, the “cut” of the first tip of j.(k). The first
segment at large values of k (cf. Fig. 10) corresponds to the
conventional case for a +-type line; the criterion for delocal-
ization involves the full conversion of potential to kinetic
energy of the heavy junction and the subsequent tunneling of
the quantum junction right at the turning point of the classi-
cal junction [cf. inset (1) of Fig. 10]. Following the j (k) line
further with decreasing j, we reach a point where the poten-
tial energy of the classical junction after the phase slip event
is no longer sufficient to overcome the next barrier and an
additional increase in j is required to provide the missing
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energy. Segment (2) then involves partial conversion of the
initial potential energy within the two wells before and after
the phase slip event. Finally, moving along the segment (2)
toward lower k the value of ¢; where the phase slip occurs
decreases and finally reaches ¢,=0 [cf. Fig. 10, inset (3)].
The critical line then continues along the third segment
which is of the typical —-type, with the quantum junction
undergoing tunneling before the classical junction starts
moving. After tunneling, a large current is required to lower
the barrier in the cosine potential of the classical junction [cf.
Fig. 10, inset (3)]. Note that the differentiation between posi-
tively sloped segments of type (1) and type (2) persists to
segments determined by a higher fluxon index n, although
the difference is invisible on the scale of Fig. 10.

C. Intermediate ratios of C/C,: Probabilistic effects

Above, we have assumed the limit of very large ratios
C,/C, and explained the generic behavior of the system. In
the case where this ratio assumes an intermediate value, one
may enter a new, interesting, and qualitatively different dy-
namical regime, where the classical junction is pulled out of
its metastable state more effectively. This efficient liberation
is realized when the quantum junction attains a high-energy
state residing at the opposite side of the parabolic potential
(large values of ¢, in Fig. 8) and holds on to it while drag-
ging the heavy junction out of its metastable state. This re-
quires a fast’! current ramping d,j> 1/7, (on the scale of the
intervalley motion of the light junction), pushing the quan-
tum junction to high potential energies during the ramp-up
process. Furthermore, the condition w,, ;> 1/7, has to be sat-
isfied to allow for motion of the heavy junction before relax-
ation of the quantum junction (from a side-well local ground
state) back to the global minimum; this condition defines the
largeness of the capacitance ratio C,/C, required for this
regime.

In order to simplify the situation, we assume a (weak)
finite damping of the classical junction, w;’ll <7 <7,, assur-
ing that the classical junction relaxes before tunneling of the
quantum junction (this assumption is merely a convenience,
allowing us to ignore the availability of kinetic energy for the
classical junction upon fast ramping). We then start from the
local ground state of the original potential well at ¢;=¢,
=arcsin j. The decay proceeds in the direction of ¢, in the
effective potential v ] arcsin j](¢,) and can end up in any of
the lower local ground states for the quantum junction. We
denote the energy of the local ground state of the quantum
junction in the nth well by & (not to be confused with g, the
nth excited state in the spectrum of the quantum junction).
We estimate these energies as

Eo(e1) = vler 5™, (26)

where go’zni“’”(gol) is the solution to Eq. (8) near ¢,~2mmn at
fixed ¢; and we have neglected the zero-point energy
ﬁw,,,z/ 2.

The dynamics of ¢; depends strongly on the fluxon index
n of the state of the quantum junction after the decay: the
larger n, the stronger is the force on ¢, facilitating its escape.
We can define two extreme values for the critical current: a
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FIG. 11. Effective critical currents of the dynamically asymmet-
ric SQUID for 7> w;% and fast ramping. The system always turns

- ) - D)
resistive for j>j (k) but never turns resistive for j<<j (k). For
j£1)< Jj< jf,z) the delocalization of the system is determined by the
statistical nature of the decay process of the quantum junction in-
volving the side minima.

lower limit jE,l)(k) arising from the largest attainable fluxon
index n and an upper limit jgz)(k) associated with the index n
of the global minimum of the quantum junction. We estimate
the maximal index n by comparing the energy of the state of
the quantum junction before its initial decay to the height of
the barrier blocking the access to the nth minimum. The
numerical solution of the relation

verl 1 = arcsin j](¢, = arcsin j) = ve(@)"). (27

max,n max

with ¢; the solution to Eq. (8) near ¢~ (2n-1)7 at
¢;=arcsin j provides us with the line jgff'(k). The subse-
quent stability anal?/sis of ¢, generates the lines jg,)l_(k); their
combination into j\"(k) is displayed in Fig. 11.

The shape of ji.z)(k) is found as described before: we de-
termine the index n of the global minimum of v(¢,) and
deduce the motion of ¢, in the effective potential &;(¢;). The
reduction in critical current due to the massive dynamics of
¢, is not as pronounced as in Fig. 10, since the maximal
critical current j(cz)(k) involves the process, where the classi-
cal junction dissipates most of its kinetic energy. The quan-
tum junction decays to the (n—1) fluxon state, the classical
junction relaxes to its local minimum near ¢;=arcsin j,
whereupon the quantum junction decays further to its global
ground state with fluxon index n. Only the potential energy
gained by the classical junction in the last step can be trans-
formed to kinetic energy, making the resulting line shown in
Fig. 11 differ from j.(k) in the overdamped case (Fig. 5).

The two critical lines j(k) and j(k) define a broad
intermediate regime (see the gray area in Fig. 11) where the
decay of the system is of probabilistic nature: whereas no
Miinchhausen decay is possible for j< jgl)(k), the decay of
the system in the intermediate regime depends on which
minimum the quantum junction ¢, decays to. For j>j% (k)
the system is always bound to decay.

The critical line jf)(k) crosses twice the critical line
jE.l)(k) near k=0.5 and for n=2. This special situation arises
when the most distant accessible minimum and the global
minimum are neighbors (with indices n=2 and n=1) and
hence strongly interrelated. With decreasing k, both the
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height of the maximum near ¢,=~ 37 [determining jgl)(k)]
and the position of the minimum at ¢,~4 (n=2) with re-
spect to the one at ¢,~27 [n=1; the competition between
these minima defines j(cz)(k)] are lowered. The latter effect is
slightly stronger, leading to the crossing of the lines under a
small angle. Upon further lowering of k, the relevant fluxon
index for jgl)(k) increases twice as fast as for ji,z)(k), prevent-
ing any further crossings of the critical lines.

To guarantee reasonable time scales in the experiment re-
quires a fast quantum dynamics near the global minimum,
hence the ratio E;/fw), , should be small, of order unity. For
a fast ramping, this is in conflict with the requirement of
large 7, in all side wells; as a result, not all reachable side
minima may be relevant for the dynamics of ¢, (i.e., 7
>w;’11 does not hold), effectively shifting the lower critical
current jf,l)(k) to larger values.

So far we have neglected any quantum corrections for the
variable ¢;; however, with a finite ratio C,/C, such correc-
tions may become relevant. Modifications due to quantum
fluctuations in the heavy degree of freedom are twofold: on
the one hand, we have disregarded the tunneling of ¢,
through a small residual barrier, leading to a broadening of
all lines of the —-type. On the other hand, we have assumed
the dynamics of ¢, to occur in the effective potential
Vet @11(@,), with ¢ fixed, while for a finite value of C; the
ground-state wave function of the heavy junction acquires a
finite width on the order of 8¢, ~ (8E,,/E,)"*. This leads to
a broadening of all lines of the +-type, which can be inter-
preted as ¢; taking part in the tunneling of ¢,.

V. EXPERIMENTAL IMPLEMENTATION

The running state following a Miinchhausen decay is as-
sociated with a finite time-averaged voltage across the de-
vice. The above results can therefore be tested experimen-
tally, e.g., by measuring the voltage drop as a function of the
applied bias current J and of the inductance L of the SQUID.

In an experiment in the weak-damping regime (Sec. IV),
the dynamical asymmetry of the SQUID could be imple-
mented by shunting one of the two junctions with an external
capacitance.’? Capacitive shunts on the order of a few pF can
be fabricated nowadays*} while typical small junctions have
capacitances on the order of a fF.!!* Thus, ratios C,/C,
~10? are feasible already today.

Apart from a general reduction in the critical current be-
low the classical value of 2/, the major manifestation of the
Miinchhausen effect is the shape of the effective critical cur-
rent j.(k) in the J—L~! plane at low values of k<<0.2. The
latter is determined by the total inductance of the loop L
=Lgeo+Lyin, comprising the geometric (L,.,) and kinetic
(Lyin) inductances of the loop. The former is on the order of
the loop perimeter and accounts for the magnetic field en-
ergy. The kinetic inductance relates to the geometric quantity
via Lyg, ~ LeeoN*/ 1%, with r the radius of the wire and N de-
noting the superconducting penetration depth. Usually, the
inductance is dominated by its geometric part. However, a
large inductance, as desired for our setup, can be installed by
using a thin wire.

Detecting the shape of the critical line j.(k) in the J
—L7! plane requires changing the coupling ko L~!. Unfortu-
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nately, the inductance is fixed after fabrication; its modifica-
tion may require the installation of a diamagnetic shield or a
change in sample geometry. An efficient way of tracing the
(local) shape of the critical current line in an experiment is
obtained by applying an external magnetic flux ®, to the
sample, in which case the potential Eq. (2) has to be replaced
by

v(@1.@y) =1—cos @ + 1 —cos @ — j(@; + @)

k
+ 5(991 — ¢ - Zﬁq)e/q)o)2~ (28)

The critical current j,. then can be studied as a function of @,
and uncovers the changeover between two branches j (k)
and j_,(k). Due to the periodicity in ®,, only one pair of
branches at fixed n can be observed; other portions of the
critical line with different n could then be traced out by
changing the sample geometry or adding a shield. Note the
universal shape of the rescaled curve j.(k) for devices with
junctions of equal coupling Ej; this feature can be exploited
provided that junctions of equal coupling can be fabricated
and their critical current can be measured.

The analysis including an external flux ®, proceeds in the
same way as before: a change in k altering the opening angle
of the parabola in v(¢,,¢,) is replaced by a shift in the
parabola’s position due to the applied flux ®,. As an illustra-
tion, we discuss here the most simple case of an overdamped
dynamics, analogous to Sec. III. In a first step, the system
relaxes to the ground state at the minimum of the potential

min min

v(¢r, @), Eq. (28), as given by the solutions ¢, 5" of

. min . min min (I)e
sin(@r") —j+k{ @ — gy 2w 0" =0, (29)
0

. min . min min (I)e
sin(¢; )—J—k<¢1 -¢ —27T¢T> =0 (30
0

near @""=~¢@}"~0. The critical line !, (®,) then derives
from the condition
k= J
Q2n- 17— @"™(®,) + 27D,/ D,

(31)

where both the shift of the parabola v.g(¢,) by 27®,/ D,
and the flux dependence of ¢]"" are accounted for. Similarly,
Eq. (14) for k_,(j) is changed to

1-j
kz 9
(2n = 1/2)r + arcsin(2j — 1) + 27D /D,

(32)

from which we find the critical lines j_,(®,). The results
of Egs. (29)-(32) are invariant under the shifts
P,/ Py—P,/Py+=1 and n—(n+1). The Miinchhausen
decay thus can be studied within a finite interval, e.g.,
d,/d,e[-0.5,0.5], and the resulting phase diagram is dis-
played in Fig. 12.

Biasing the SQUID with an external magnetic flux has a
convenient side effect: for negative flux ®,, the crossing
point of j; (k) and j_ (k) is shifted to larger values of k and
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FIG. 12. Phase diagram of the dynamically asymmetric SQUID
in the strong damping case as a function of the externally applied
flux ®, and bias current j. Here, the coupling k> L' is fixed at a
value k=0.06; the critical lines in the diagram correspond to n=2.
The critical line is periodic in @, with a period ®,, a consequence
of the invariance under the replacements ®,/Py— P,/ Py* 1 and
n—m¥1).

the tunneling barrier for ¢, is lowered, allowing to study the
Miinchhausen effect using a SQUID with considerably
smaller inductance and hence smaller size.

Additional experiments can be performed which test the
classical and quantum natures of the critical current branches
or the extension of j; (k) away from the critical line (see
Fig. 5). As previously discussed in Sec. III, the different
nature of the decay on branches of j.(k) with different slope
is accessible to experimental verification. Since the decay is
ultimately of quantum nature on positively sloped branches

:n(k)] broad time-bin histograms of multiple measure-
ments are expected. On negatively sloped branches [, (k)],
where the decay is ultimately classical and deterministic, the
resulting histograms are more narrow. In carrying out such
an experiment with an underdamped sample, care has to be
taken in letting the system relax in the last stable state before
crossing j (k).

In another type of experiment, the time trace of the flux
threading the loop in the finite-voltage state can be measured
(see the illustration Fig. 6). Furthermore, the flux charging of
the loop upon crossing a j:n(k) line not constituting part of

PHYSICAL REVIEW B 79, 184515 (2009)

the critical line (dotted line in Fig. 5) can easily be measured,
without stringent requirements regarding the time resolution
of the experiment. Likewise, the discharging upon crossing a
Jen(k) part of j.(k) manifests itself as a reduction in the time-
averaged flux.

VI. CONCLUSION

We have shown how a system consisting of a quantum
degree of freedom coupled to a classical one, implemented
with a two-junction SQUID, can perform a complex decay
process out of a zero-voltage state involving quantum tun-
neling of the light junction and classical motion of the heavy
junction. We have analyzed the cases of strong and weak
damping for different methods of preparation (fast and slow
ramping) and for various ratios of the capacitances C,/C,
and have found the effective critical current j (k) exhibiting a
common characteristic shape. Its zig-zag-like structure origi-
nates in two competing effects: while the number n of flux
units which can enter the SQUID is increased with decreas-
ing k, the current redirected over the heavy junction at given
n is decreased. For junctions with equal critical currents, the
critical line approaches the value jc(k—>0)—>% in the dissi-
pative case; asymmetries in the critical currents of the two
junctions lead to a shift of the critical line j.(k) to values
straddling the critical current of the heavy junction. Going
over from dissipative to massive dynamics, the kinetic en-
ergy stored in the system allows to better overcome the po-
tential barriers and the critical line shifts to smaller values of
Jj; furthermore, hysteretic effects, similar to the situation en-
countered for underdamped junctions, and even probabilistic
behavior may show up.
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